If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6u^2+3u=0
a = -6; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-6)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-6}=\frac{-6}{-12} =1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-6}=\frac{0}{-12} =0 $
| a^2+2.6^2=3.9^2 | | 8n=(8)^2 | | a^2+8^2=9^2 | | 2^2+b^2=3^2 | | 2(x-3)^2=2(x^2+9) | | -16=-n/19 | | 3(x+6)=2(2x-6) | | t/3-4=21 | | 7x+12+8x+18=90 | | x+6.1=12.2 | | 8n=(6+2)^2 | | 5(2x}x=3 | | 3(-2x-6)+2(3x+5)-9x=11-5x+2(7-3x)-1 | | -1/8=g-42/5 | | 2xx=40 | | 8n=2(3+1)^2 | | 15=x-18;x= | | 7.6^2+b^2=9.2^2 | | 7n=27-6 | | 15=x-18;x | | 3(-2x-6)+2(3x+5)-9x=11-5x+3(7-3x)-1 | | a^2+5^2=9^2 | | 36x^2-60x=0 | | 2x+24=x+5 | | 12n=62 | | 2(-11x+7)=11x-19 | | 3n=40-10 | | 5u^2+9u=0 | | a^2+20^2=25^2 | | 6n=6+18 | | 5x-4x+8=8-3x | | -5-3x=1x-3 |